16001C
Титульный экран
Содержание
1. ВВЕДЕНИЕ
2. СТИРАЛЬНЫЕ МАШИНЫ
2.2. Оценка качества стиральных машин
2.3. Электрооборудование стиральных машин
2.4. Принципы работы электроприводов стиральных машин
2.4.2. Двухдвигательный электропривод стиральной машины с центрифугой
2.5. Стиральная машина СМА-4ФБ «Вятка – автомат-12»
3. ХОЛОДИЛЬНИКИ
3.2. Электрооборудование холодильников
3.4. Периферийные устройства типа «Закройте холодильник»
4. ПЫЛЕСОСЫ
4.1. Исторические сведения
4.2. Классификация пылесосов
4.3. Устройство пылесосов
4.3.2. Электропылесос вихревого типа
4.3.3. Электрополотеры
4.4. Двигатели электропылесосов
4.5. Фильтры радиопомех
4.6. Регулирование частоты вращения коллекторного электродвигателя
4.7. Принципы выбора пылесоса
5. МИКРОВОЛНОВЫЕ ПЕЧИ
5.1. Структура микроволновой печи
5.3. Диссектор
5.4. Вращающийся диск (поддон)
5.5. Ввод волновода
5.6. Устройство дверцы микроволновой печи
5.7. Электрооборудование микроволновой печи
5.8. Магнетрон
5.8.2. Конструкция магнетрона микроволновой печи
5.8.3. Принцип работы магнетрона
6. УСТРОЙСТВА МИКРОКЛИМАТА
6.2. Классификация устройств микроклимата
6.3. Примеры выполнения устройств микроклимата
6.3.2. Комбинированный регулятор температуры
6.3.3. Универсальный терморегулятор для теплиц
6.3.4. Автомат управления вентиляцией в помещении
6.3.5. Регулятор влажности
6.3.6. Теплогенератор типа ТГ
6.4. Тепловое оборудование служебных помещений и офисов
6.4.2. Инфракрасные обогреватели
6.4.3. Воздушные тепловые завесы
6.5. Кондиционеры
6.5.1. Исторические сведения
6.5.2. Устройство и принцип действия кондиционеров
6.5.3. Виды кондиционеров
6.5.4. Принцип работы кондиционера
6.5.5. Электрооборудование кондиционеров и тепловентиляторов
6.6. Аэроионизаторы
6.6.1. Электрооборудование аэроионификационной электроэфлювиальной аппаратуры
7. ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ НЕСАНКЦИОНИРОВАННОГО ПРОНИКНОВЕНИЯ В ОБЪЕКТЫ И ИСПОЛЬЗОВАНИЯ ОБОРУДОВАНИЯ
7.2. Кодовые замки
7.2.2. Кодовый замок-звонок
7.3. Блокиратор системы искрового зажигания двигателя автомобиля
7.4. Охранная сигнализация
7.4.2. Устройство контроля отдаленных объектов
7.4.3. Фотореле на инфракрасных лучах
7.4.4. Схема «Нет ли «жучка» в квартире?»
8. ПОДВИЖНАЯ ТЕЛЕФОННАЯ СВЯЗЬ. СОТОВЫЕ ТЕЛЕФОНЫ
8.2. Назначение и классификация сетей подвижной связи
8.3. Архитектура сотовой связи
8.3.1. Подвижная станция. Сотовый телефон
8.4. Особенности организации сотовой связи
8.4.2. Полосы частот сотовой связи некоторых фирм
8.4.3. Роуминг
8.4.4. Использование сотового телефона в автомобиле
8.4.5. Рекомендации по выбору сотового телефона
8.5. Антенны, используемые в подвижной телефонной связи
8.5.1. Дальность связи
8.5.5. Расчет антенны «Двойной квадрат»
8.6. Влияние работы сотового телефона на здоровье пользователя
8.7. Преимущества сотовой связи
9. СВЕТОВЫЕ РЕКЛАМНЫЕ УСТРОЙСТВА
9.1. Этапы разработки устройств световой рекламы
9.2. Технические средства изготовления световой рекламы
9.3. Световые рекламные устройства
9.3.2. Переключатель световых гирлянд
9.3.3. Работа электронного светофора
10. ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРИ МОНТАЖЕ МИКРОСХЕМ В БЫТОВОЙ ТЕХНИКЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ




4.4 Двигатели электропылесосов


В пылесосах применяются коллекторные двигатели мощностью от 40 до 800 Вт и частотой вращения 14000 - 25000 об/мин.

В коллекторных электродвигателях переменного тока независимого возбуждения обмотка возбуждения ОВ и обмотка якоря Я подключены параллельно источнику питания. Если пренебречь потерями на гистерезис и вихревые токи, можно считать, что магнитный поток возбуждения совпадает по фазе (во времени) с током возбуждения Iв (рис. 4.12 а). Обмотка якоря имеет значительно меньшее индуктивное сопротивление, чем обмотка возбуждения. Вследствие этого ток Iя, протекающий в ней, опережает по фазе ток возбуждения Iв, а следовательно, и магнитный поток Ф. Вращающий момент М, развиваемый электродвигателем, зависит от произведения магнитного потока на ток обмотки якоря.

Произведя графическое умножение тока обмотки якоря и магнитного потока Ф, получим график зависимости электромагнитного момента М, развиваемого электродвигателем от времени. В моменты времени t1 и t2, когда магнитный поток возбуждения и ток якоря совпадают по фазе (имеют одинаковое направление), электродвигатель развивает положительный вращающий момент. В моменты времени, когда магнитный поток возбуждения и ток якоря не совпадают по фазе (имеют противоположное направление), двигатель развивает отрицательный вращающий момент, который является тормозным. Результирующий вращающий момент будет равен некоторой средней величине Mср.

В коллекторных электродвигателях последовательного возбуждения обмотка возбуждения ОВ и обмотка якоря включены последовательно. Если пренебречь потерями на гистерезис и вихревые токи, то магнитный поток возбуждения совпадает по фазе с током возбуждения Iв (рис. 4.12 б).



Рисунок 4.12 Графики зависимости потока, вращающего момента и тока якоря
двигателей независимого (а) и последовательного (б) возбуждения от t.


Вследствие того, что обмотка якоря включена последовательно с обмоткой возбуждения, ток, протекающий в ней, совпадает по фазе с током, протекающим в обмотке возбуждения, а, следовательно, и с магнитным потоком Ф. Вращающий момент, развиваемый электродвигателем, в любой момент времени будет положительным. Поэтому средний вращающий момент Мср, развиваемый электродвигателем при последовательном возбуждении, будет выше, чем при независимом возбуждении. Вследствие этого электродвигатели переменного тока с последовательным возбуждением наиболее распространены.

Электрическая схема пылесоса показана на рис. 4.13.

Рисунок 4.13 Электрическая схема электропылесоса «Чайка-10»:
L1, L2 - обмотки возбуждения, М - электродвигатель, C1, C2 - конденсаторы емкостью 0,0047 мкФ, С3 - конденсатор емкостью 0,47 мкФ, S - выключатель, K1, K2 - скользящие контакты, ХР - вилка штепсельная.